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Generative models for discrete data

Introduction

In Section 2.2.3.2, we discussed how to classify a feature vector x by applying Bayes rule to a
generative classifier of the form

p(y = c|x,0) x p(x|y = ¢, 0)p(y = ¢|6) (3.1

The key to using such models is specifying a suitable form for the class-conditional density
p(x|y = ¢, 8), which defines what kind of data we expect to see in each class. In this chapter,
we focus on the case where the observed data are discrete symbols. We also discuss how to
infer the unknown parameters @ of such models.

Bayesian concept learning

Consider how a child learns to understand the meaning of a word, such as “dog”. Presumably
the child’s parents point out positive examples of this concept, saying such things as, “look at
the cute dog!”, or “mind the doggy”, etc. However, it is very unlikely that they provide negative
examples, by saying “look at that non-dog”. Certainly, negative examples may be obtained during
an active learning process — the child says “look at the dog” and the parent says “that’s a cat,
dear, not a dog” — but psychological research has shown that people can learn concepts from
positive examples alone (Xu and Tenenbaum 2007).

We can think of learning the meaning of a word as equivalent to concept learning, which in
turn is equivalent to binary classification. To see this, define f(z) = 1 if x is an example of the
concept C, and f(z) = 0 otherwise. Then the goal is to learn the indicator function f, which
just defines which elements are in the set C. By allowing for uncertainty about the definition
of f, or equivalently the elements of C, we can emulate fuzzy set theory, but using standard
probability calculus. Note that standard binary classification techniques require positive and
negative examples. By contrast, we will devise a way to learn from positive examples alone.

For pedagogical purposes, we will consider a very simple example of concept learning called
the number game, based on part of Josh Tenenbaum'’s PhD thesis (Tenenbaum 1999). The game
proceeds as follows. I choose some simple arithmetical concept C, such as “prime number” or
“a number between 1 and 10”. I then give you a series of randomly chosen positive examples
D = {z1,...,zn} drawn from C, and ask you whether some new test case Z belongs to C,
ie, I ask you to classify Z.
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Figure 3.1 Empirical predictive distribution averaged over 8 humans in the number game. First two
rows: after seeing D = {16} and D = {60}. This illustrates diffuse similarity. Third row: after
seeing D = {16,8,2,64}. This illustrates rule-like behavior (powers of 2). Bottom row: after seeing
D = {16,23,19,20}. This illustrates focussed similarity (numbers near 20).  Source: Figure 5.5 of
(Tenenbaum 1999). Used with kind permission of Josh Tenenbaum.

Suppose, for simplicity, that all numbers are integers between 1 and 100. Now suppose I tell
you “16” is a positive example of the concept. What other numbers do you think are positive?
172 62 322 992 It's hard to tell with only one example, so your predictions will be quite vague.
Presumably numbers that are similar in some sense to 16 are more likely. But similar in what
way? 17 is similar, because it is “close by”, 6 is similar because it has a digit in common,
32 is similar because it is also even and a power of 2, but 99 does not seem similar. Thus
some numbers are more likely than others. We can represent this as a probability distribution,
p(%|D), which is the probability that & € C' given the data D for any Z € {1,...,100}. This
is called the posterior predictive distribution. Figure 3.1(top) shows the predictive distribution
of people derived from a lab experiment. We see that people predict numbers that are similar
to 16, under a variety of kinds of similarity. :

Now suppose I tell you that 8, 2 and 64 are also positive examples. Now you may guess that
the hidden concept is “powers of two”. This is an example of induction. Given this hypothesis,
the predictive distribution is quite specific, and puts most of its mass on powers of 2, as shown
in Figure 31(third row). If instead I tell you the data is D = {16,23,19,20}, you will get a
different kind of generalization gradient, as shown in Figure 3.1(bottom).

How can we explain this behavior and emulate it in a machine? The classic approach to
induction is to suppose we have a hypothesis space of concepts, H, such as: odd numbers,
even numbers, all numbers between 1 and 100, powers of two, all numbers ending in j (for
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0 <7 <9), etc. The subset of A that is consistent with the data D is called the version space.
As we see more examples, the version space shrinks and we become increasingly certain about
the concept (Mitchell 1997).

However, the version space is not the whole story. After seeing D = {16}, there are many
consistent rules; how do you combine them to predict if Z € C? Also, after seeing D =
116, 8,2, 64}, why did you choose the rule ‘powers of two” and not, say, “all even numbers”, or
“powers of two except for 32”, both of which are equally consistent with the evidence? We will
now provide a Bayesian explanation for this.

Likelihood

We must explain why we chose Ay, £“powers of two”, and not, say, heven = “even numbers”
after seeing D = {16, 8, 2,64}, given that both hypotheses are consistent with the evidence.
The key intuition is that we want to avoid suspicious coincidences. If the true concept was
even numbers, how come we only saw numbers that happened to be powers of two?

To formalize this, let us assume that examples are sampled uniformly at random from the
extension of a concept. (The extension of a concept is just the set of numbers that belong
to it, e.g, the extension of Aieye, is {2,4,6,...,98, 100}; the extension of “numbers ending
in 9”is {9,19,...,99}) Tenenbaum calls this the strong sampling assumption. Given this
assumption, the probability of independently sampling N items (with replacement) from  is
given by

1 N 11N
2o = | 2im) =[] 5
This crucial equation embodies what Tenenbaum calls the size principle, which means the
model favors the simplest (smallest) hypothesis consistent with the data, This is more commonly
known as Occam’s razor.! :

To see how it works, let D = {16}. Then P(D|Rhswo) = 1/6, since there are only 6 powers
of two less than 100, but P(Dlheven) = 1/50, since there are 50 even numbers. So the
likelihood that h = Ay, is higher than if A = heye,. After 4 examples, the likelihood of Ay,
is (1/6)* = 7.7 x 10™4, whereas the likelihood of heven 1s (1/50)% = 1.6 x 10~". This is
a likelihood ratio of almost 5000:1 in favor of Mtwo. This quantifies our earlier intuition that
D = {16,8, 2,64} would be a very suspicious coincidence if generated by Agyey,.

Prior

Suppose D = {16,8,2,64}. Given this data, the concept k' ="powers of two except 32" is
more likely than & =“powers of two”, since 4’ does not need to explain the coincidence that 32
is missing from the set of examples.

However, the hypothesis 4/ =“powers of two except 32" seems “conceptually unnatural”. We
can capture such intution by assigning low prior probability to unnatural concepts. Of course,
your prior might be different than mine. This subjective aspect of Bayesian reasoning is a
source of much controversy, since it means, for example, that a child and a math professor

L. William of Occam (also spelt Ockham) was an English monk and philosopher, 1288-1348.
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will reach different answers. In fact, they presumably not only have different priors, but also
different hypothesis spaces. However, we can finesse that by defining the hypothesis space of
the child and the math professor to be the same, and then setting the child’s prior weight to be
zero on certain “advanced” concepts. Thus there is no sharp distinction between the prior and
the hypothesis space. »

Although the subjectivity of the prior is controversial, it is actually quite useful. If you are
told the numbers are from some arithmetic rule, then given 1200, 1500, 900 and 1400, you may
think 400 is likely but 1183 is unlikely. But if you are told that the numbers are examples of
healthy cholesterol levels, you would probably think 400 is unlikely and 1183 is likely. Thus we
see that the prior is the mechanism by which background knowledge can be brought to bear on
a problem. Without this, rapid learning (i.e., from small samples sizes) is impossible.

So, what prior should we use? For illustration purposes, let us use a simple prior which
puts uniform probability on 30 simple arithmetical concepts, such as “even numbers”, “odd
numbers”, “prime numbers”, “numbers ending in 9”, etc. To make things more interesting, we
malke the concepts even and odd more likely apriori. We also include two “unnatural” concepts,
namely “powers of 2, plus 37” and “powers of 2, except 32", but give them low prior weight. See
Figure 3.2(a) for a plot of this prior. We will consider a slightly more sophisticated prior later on.

Posterior
The posterior is simply the likelihood times the prior, normalized. In this context we have

p(Dp(R) _ (WD € h)/h]"
S PO )~ Tyen PHOLD € W)WY

where I(D € h) is 1 iff (f and only if) all the data are in the extension of the hypothesis h.
Figure 3.2 plots the prior, likelihood and posterior after seeing D = {16}. We see that the
posterior is a combination of prior and likelihood. In the case of most of the concepts, the prior
is uniform, so the posterior is proportional to the likelihood. However, the “unnatural” concepts
of “powers of 2, plus 37" and “powers of 2, except 32" have low posterior support, despite having
high likelihood, due to the low prior. Conversely, the concept of odd numbers has low posterior
support, despite having a high prior, due to the low likelihood.

Figure 3.3 plots the prior, likelihood and posterior after seeing D = {16,8,2,64}. Now the
Jikelihood is much more peaked on the powers of two concept, so this dominates the posterior.
Essentially the learner has an aha moment, and figures out the true concept. (Here we see the
need for the low prior on the unnatural concepts, otherwise we would have overfit the data and
picked “powers of 2, except for 32”)

In general, when we have enough data, the posterior p(h|D) becomes peaked on a single
concept, namely the MAP estimate, ie.,

p(h|D) 3.3)

p(th) — 6;’%}1\4,413 (h) (34)

where hMAF = argmax,, p(h|D) is the posterior mode, and where ¢ is the Dirac measure
defined by

(3.5

{1 ifze A

0 fzgA




3.2. Bayesian concept learning

data =16

35

squares
mult of 3 §
mult of 4 58
mult of 5
mult of 6
mult of 7
mult of 8 i
mult of 9
mult of 10
ends in 1 i
ends in 2
ends in 3 &
ends in 4
endsin 5§
ends in G
endsin7

30 G

25

20

powers of 2 + {37
powers of 2 - {32}

0 0
0 0.1 020 0.2 040 0.2 0.4
prior lik post

Figure 3.2 Prior, likelhood and posterior for D = {16}. Based on (Tenenbaum 1999). Figure generated
by numbersGame.

Note that the MAP estimate can be written as
RMAP — argmax p(D|h)p(h) = argmax [log p(D|h) + log p(h)] (3.6)
h h

Since the likelihood term depends exponentially on N, and the prior stays constant, as we get

more and more data, the MAP estimate converges towards the maximum likelihood estimate
or MLE:

hmte & argmax p(D|h) = argmax logp(D]|h) 3.7
h h

In other words, if we have enough data, we see that the data overwhelms the prior. In this
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Figure 3.3 Prior, likelihood and posterior for D = {16,8,2,64}. Based on (Tenenbaum 1999). Figure
generated by numbersGame.

case, the MAP estimate converges towards the MLE.

If the true hypothesis is in the hypothesis space, then the MAP/ ML estimate will converge
upon this hypothesis. Thus we say that Bayesian inference (and ML estimation) are consistent
estimators (see Section 6.4 for details). We also say that the hypothesis space is identifiable in
the limit, meaning we can recover the truth in the limit of infinite data. If our hypothesis class
is not rich enough to represent the “truth” (which will usually be the case), we will converge
on the hypothesis that is as close as possible to the truth. However, formalizing this notion of
“closeness” is beyond the scope of this chapter.
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Figure 3.4 Posterior over hypotheses and the corresponding predictive distribution after seeing one
example, D = {16}. A dot means this number is consistent with this hypothesis. The graph p(h|D) on
the right is the weight given to hypothesis 4. By taking a weighed sum of dots, we get p(% € C|D) (top).
Based on Figure 2.9 of (Tenenbaum 1999). Figure generated by numbersGame.

Posterior predictive distribution

The posterior is our internal belief state about the world. The way to test if our beliefs are
justified is to use them to predict objectively observable quantities (this is the basis of the
scientific method). Specifically, the posterior predictive distribution in this context is given by

p(& € CID) = ply = 1|7, h)p(h|D) (3.8)

h

This is just a weighted average of the predictions of each individual hypothesis and is called
Bayes model averaging (Hoeting et al. 1999). This is illustrated in Figure 3.4. The dots at the
bottom show the predictions from each hypothesis; the vertical curve on the right shows the
weight associated with each hypothesis. If we multiply each row by its weight and add up, we
get the distribution at the top.

When we have a small and/or ambiguous dataset, the posterior p(h|D) is vague, which
induces a broad predictive distribution. However, once we have “figured things out”, the posterior
becomes a delta function centered at the MAP estimate. In this case, the predictive distribution
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becomes

p(i € OID) = 3 p(alh)5; (1) = p(&lh) 69
h

This is called a plug-in approximation to the predictive density and is very widely used, due
to its simplicity. However, in general, this under-represents our uncertainty, and our predictions
will not be as “smooth” as when using BMA. We will see more examples of this later in the book.

Although MAP learning is simple, it cannot explain the gradual shift from similarity-based
reasoning (with uncertain posteriors) to rule-based reasoning (with certain posteriors). For
example, suppose we observe D = {16}. If we use the simple prior above, the minimal
consistent hypothesis is “all powers of 4”, so only 4 and 16 get a non-zero probability of being
predicted. This is of course an example of overfitting. Given D = {16,8,2,64}, the MAP
hypothesis is “all powers of two”. Thus the plug-in predictive distribution gets broader (or stays
the same) as we sée more data: it starts narrow, but is forced to broaden as it sees more data.
In contrast, in the Bayesian approach, we start broad and then narrow down as we learn more,
which makes more intuitive sense. In particular, given D = {16}, there are many hypotheses
with non-negligible posterior support, so the predictive distribution is broad. However, when we
see D = {16, 8,2, 64}, the posterior concentrates its mass on one hypothesis, so the predictive
distribution becomes narrower. So the predictions made by a plug-in approach and a Bayesian
approach are quite different in the small sample regime, although they converge to the same
answer as we see more data.

A more complex prior

To model human behavior, Tenenbaum used a slightly more sophisticated prior which was de-
rived by analysing some experimental data of how people measure similarity between numbers;
see (Tenenbaum 1999, p208) for details. The result is a set of arithmetical concepts similar to
those mentioned above, plus all intervals between n and m for 1 < n,m < 100. (Note that
these hypotheses are not mutually exclusive.) Thus the prior is a mixture of two priors, one
over arithmetical rules, and one over intervals:

p(h) = moppyles (7) + (1 = m0)Pinterval (h) (3.10)

The only free parameter in the model is the relative weight, 7, given to these two parts of the
prior. The results are not very sensitive to this value, so long as g > 0.5, reflecting the fact
that people are more likely to think of concepts defined by rules. The predictive distribution
of the model, using this larger hypothesis space, is shown in Figure 3.5. It is strikingly similar
to the human predictive distribution, shown in Figure 3.1, even though it was not fit to human
data (modulo the choice of hypothesis space).

The beta-binomial model

The number game involved inferring a distribution over a discrete variable drawn from a finite
hypothesis space, h € 74, given a series of discrete observations. This made the computations
particularly simple: we just needed to sum, multiply and divide. However, in many applications,
the unknown parameters are continuous, so the hypothesis space is (some subset) of R¥, where




