User Tools

Site Tools


cs401r_w2016:lab13

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
cs401r_w2016:lab13 [2016/01/13 17:14]
admin
cs401r_w2016:lab13 [2016/02/12 00:06]
admin
Line 6: Line 6:
 ====Deliverable:​==== ====Deliverable:​====
  
-For this lab, you will implement the Expectation Maximization algorithm on the Old Faithful dataset. ​ This involves learning the parameters of a Gaussian mixture model. ​ Your notebook should produce a visualization of the progress of the algorithm. ​ The final figure ​should ​look something like this:+For this lab, you will implement the Expectation Maximization algorithm on the Old Faithful dataset. ​ This involves learning the parameters of a Gaussian mixture model. ​ Your notebook should produce a visualization of the progress of the algorithm. ​ The final figure ​could look something like this (they don't have to be arranged in subplots)
  
-{{ :​cs401r_w2016:​lab5_em.png?​direct&​300|}}+{{:​cs401r_w2016:​lab5_em.png?​direct&​600|}}
  
 ---- ----
 ====Grading:​==== ====Grading:​====
-Your notebook will be +Your notebook will be graded on the following elements: 
 + 
 +  * 10% Data is correctly mean-centered 
 +  * 20% Correctly updates responsibilities 
 +  * 20% Correctly updates means 
 +  * 20% Correctly updates covariances 
 +  * 20% Correctly updates mixing weights 
 +  * 10% Final plot(s) is tidy and legible
  
 ---- ----
 ====Description:​==== ====Description:​====
  
 +For this lab, we will be using the Expectation Maximization (EM) method to **learn** the parameters of a Gaussian mixture model. ​ These parameters will reflect cluster structure in the data -- in other words, we will learn probabilistic descriptions of clusters in the data.
  
 +For this lab, you will use the Old Faithful dataset, which you can download here:
 +
 +[[http://​hatch.cs.byu.edu/​courses/​stat_ml/​old_faithful.mat|Old Faithful dataset]]
 +
 +**The first thing you should is mean-center your data (ie, compute the mean of the data, then subtract that off from each datapoint).** ​ (If you don't do this, you'll get zero probabilities for all of your responsibilities,​ given the initial conditions discussed below.)
 +
 +The equations for implementing the EM algorithm are given in MLAPP 11.4.2.2 - 11.4.2.3.
 +
 +The algorithm is:
 +
 +  - Compute the responsibilities $r_{ik}$ (Eq. 11.27)
 +  - Update the mixing weights $\pi_k$ (Eq. 11.28)
 +  - Update the means $\mu_k$ (Eq. 11.31)
 +  - Update the covariances $\Sigma_k$ (Eq. 11.32)
 +
 +Now, repeat until convergence.
 +
 +Since the EM algorithm is deterministic,​ and since precise initial conditions for your algorithm are given below, the progress of your algorithm should closely match the reference image shown above.
 +
 +For your visualization,​ please print out at least nine plots. ​ These should color each datapoint using $r_{ik}$, and they should plot the means and covariances of the Gaussians. ​ See the hints section for how to plot an ellipse representing the 95% confidence interval of a Gaussian, given an arbitrary covariance matrix.
 +
 +
 +**Note: To help our TA better grade your notebook, you should use the following initial parameters:​**
 +
 +<code python>
 +
 +# the Gaussian means (as column vectors -- ie, the mean for Gaussian 0 is mus[:,0]
 +mus = np.asarray( [[-1.17288986,​ -0.11642103],​
 +                   ​[-0.16526981, ​ 0.70142713]])
 +
 +# the Gaussian covariance matrices
 +covs = list()
 +covs.append( ​
 +    np.asarray([[ 0.74072815, ​ 0.09252716],​
 +                [ 0.09252716, ​ 0.5966275 ]]) )
 +covs.append( ​
 +    np.asarray([[ 0.39312776, -0.46488887],​
 +                [-0.46488887, ​ 1.64990767]]) )
 +
 +# The Gaussian mixing weights
 +mws = [ 0.68618439, 0.31381561 ]  # called alpha in the slides
 +
 +</​code>​
  
 ---- ----
Line 33: Line 84:
     pmat = u*2.447*np.sqrt(s) # 95% confidence     pmat = u*2.447*np.sqrt(s) # 95% confidence
     return np.dot( ​ pmat, sf )     return np.dot( ​ pmat, sf )
 +
 +</​code>​
 +
 +Here are some additional python functions that may be helpful to you:
 +
 +<code python>
 +
 +# compute the likelihood of a multivariate Gaussian
 +scipy.stats.multivariate_normal.pdf
 +
 +# scatters a set of points; check out the "​c"​ keyword argument to change color, and the "​s"​ arg to change the size
 +plt.scatter
 +plt.xlim # sets the range of values for the x axis
 +plt.ylim # sets the range of values for the y axis
 +
 +# to check the shape of a vector, use the .shape member
 +foo = np.random.randn( 100, 200 )
 +foo.shape # an array with values (100,200)
 +
 +# to transpose a vector, you can use the .T operator
 +foo = np.atleast_2d( [42, 43] ) # this is a row vector
 +foo.T # this is a column vector
 +
 +import numpy as np
 +np.atleast_2d
 +np.sum
  
 </​code>​ </​code>​
cs401r_w2016/lab13.txt · Last modified: 2021/06/30 23:42 (external edit)