This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
|
cs401r_w2016:lab1 [2016/01/03 00:04] admin |
cs401r_w2016:lab1 [2021/06/30 23:42] (current) |
||
|---|---|---|---|
| Line 21: | Line 21: | ||
| Done correctly, this should only take a few lines of code. | Done correctly, this should only take a few lines of code. | ||
| + | |||
| + | ---- | ||
| + | ====Grading standards:==== | ||
| + | |||
| + | Your notebook will be graded on the following: | ||
| + | |||
| + | * 20% Successfully turned in a notebook with working code | ||
| + | * 20% Random image with 50 random elements | ||
| + | * 20% Correctly used pandas to load store sales data | ||
| + | * 30% Some sort of plot of sales data (only for store #1!) | ||
| + | * 10% Tidy and legible figures, including labeled axes where appropriate | ||
| ---- | ---- | ||
| Line 44: | Line 55: | ||
| For part 2, the data you should use is downloadable here: | For part 2, the data you should use is downloadable here: | ||
| - | [[http://hatch.cs.byu.edu/courses/stat_ml/store_train.csv|Rossman store sales data]] | + | [[http://liftothers.org/courses/stat_ml/store_train.csv|Rossman store sales data]] |
| ---- | ---- | ||
| Line 66: | Line 77: | ||
| should see "Notebook" and "Python 2". This will create a new | should see "Notebook" and "Python 2". This will create a new | ||
| notebook. | notebook. | ||
| + | |||
| + | **Note:** When you turn in your notebook, you should turn in the ''.ipynb'' file. Do not take a screen shot, or turn in an HTML page. | ||
| Here's some starter code to help you generate an image. The ''nbimage'' function will display the image inline in the notebook: | Here's some starter code to help you generate an image. The ''nbimage'' function will display the image inline in the notebook: | ||
| Line 115: | Line 128: | ||
| For this lab, you need select the data for store #1 and plot it. | For this lab, you need select the data for store #1 and plot it. | ||
| - | If you want to get fancy, you should label the x-axis using dates (See the example image). This involves a bit of python trickery, but check out some helpful functions in the hints below. | + | An important part of generating visualizations is conveying information cleanly and accurately. You should therefore label all axes, and in particular, the x-axis should be labeled using dates (See the example image). This involves a bit of python trickery, but check out some helpful functions in the hints below. |
| ---- | ---- | ||
| ====Hints:==== | ====Hints:==== | ||
| + | |||
| + | When using an ipython notebook, it's nice to make your plots show up inline. To do this, add the following lines to the first cell of your notebook: | ||
| + | |||
| + | <code python> | ||
| + | |||
| + | # this tells seaborn and matplotlib to generate plots inline in the notebook | ||
| + | %matplotlib inline | ||
| + | |||
| + | # these two lines allow you to control the figure size | ||
| + | %pylab inline | ||
| + | pylab.rcParams['figure.figsize'] = (16.0, 8.0) | ||
| + | |||
| + | </code> | ||
| The following python functions might be helpful: | The following python functions might be helpful: | ||